A Polymorphic Network Architecture based on Autonomous Domains

DDDARA Domain-Insulated Autonomous Network Architecture

Electronics and Telecommunications Research Institute

Woojik Chun

Target of the Work

Scope of the Work

Objectives/Requirements

• What we want – Functional, Structural & Quality

ETR

Principles

What to Choose – Selection criteria, Priority, Norms

Framework / Model

• How to Design – Style and Rules

Components / Interactions

How to Build – Building Blocks and Glue logic

Requirements & Principles

ETR

6S Requirements

Scalable (Modularity)

ETRI

Seamless (Mobility)

Secure (Trustworthy)

Sensitive (Awareness)

Smart (Autonomicy)

Sustainable (Evolvability)

Principles for Requirements

Principles: Features Derived

1. Simple	 ID for Device, User, Contents, Services, and Things ID based Bus Abstraction → Narrow Waist 	
2. Polymorphic	 Autonomy for heterogeneous networks Dynamic logical network creation 	
3. Tussle	 Union by Federation instead of unification Simple rules for Federation 	
4. Modularity	 Horizontal layering as well as vertical layering Recursive definition of Network Composite 	
5. Secure	 Trust level and required security Self-certifying ID 	
6. Deployment	 Migration Plan Incremental deployment 	

Framework & Model

Framework & Model

Polymorphic Networks

ID based Networking

ID Lookup Servers (ILS)

3 Components & Interactions

Putting Together & Applying

4

Why Architectural Framework?

Motivation

Ref: Architecting for Innovation, 2011 T.Koponen, S. Shenker, etc

- Removing barriers to innovation
 - Architectural modularity
- Inter-domain routing
 - Universal glue that makes end-to-end connectivity in global scope
- Security
 - Built-in security features (as well as trustworthy framework)
- Additional
 - Meta-negotiation between two hosts (possibly communicating entities)
 - Bootstrap interface that can be called at initiation phase

Ref: The Future Networking, 2011 S. Shenker

ETRI

□ Why Framework?

- When first getting systems to work \rightarrow Focus on mastering complexity
- When making system easy to use → Focus on extracting simplicity
- □ Future of networking lies in finding *right abstractions*
 - The era of "a new protocol per problem" is over

Methods – Abstraction & Recursion

Abstraction

- a process by which *higher* concepts are derived from the usage and classification of concepts
- while hiding the internal details

Recursion

- a method calls itself
 - To solve a simpler version of the problem
 - To repeat the same principles
- □ Self-Similarity
 - Looks like Fractals

Polymorphic Networks

□ What is Polymorphic Network

 A network where one could implement, and deploy its new network protocols or cooperation schemes without disturbing other working protocols

ETRIS

□ Why Polymorphic ?

- Various research projects, scientists and "people" will propose new ideas → heterogeneous architectures
- Enable different cooperation paradigms in parallel
- Enable easy deployment of new application deployment
- How ?
 - Virtualization, Overlay, Abstraction, Mapping ...
 - Without raising routing and addressing to the application
 - As Peer to Peer networks, overlay networks, VPN, Spontaneous networks

Multiple Principal Types

x-Centric

 HID, CID, SID, UID ···

 Different trust levels

 guarantees depending
 on principal type

Network Composites

- Horizontal Layers
 - Local, Regional, Global

ETRIS

- Logical networks
 - Virtual networks
 - Spontaneous networks

Polymorphic Networks – Examples

Polymorphic Networks – Issues

□ How to define individual networks ?

- Define dissimilar networks as independent domains
- Provide minimal rules to allow communication among dissimilar networks or logical groups (network composites)

ETRIS

- Internal details of a domain are hidden from outside
- Domains can be unit of self-management (Self-*)
- Domain may associated with other domains
 - in vertical manner (parent-child relation)
 - in horizontal manner (peer relation)
- Domain has one or more gateways (interfaces)

□ Challenging topics

- Life cycle management for domains
- Federation of domains

ID based Networking

- □ ID to all communicating Entities
 - hosts, services, and contents are plug in network bus with globally unique ID

ETRI#

- □ Location-independent ID
 - ID must be bound to location (early or late binging)
- □ provide well-defined interfaces
 - register, publish, present, associate, send/receive

ID based Networking : Definitions

- Definitions by Assignments
 - Name \rightarrow what
 - Address → where

- Definitions by Roles
 - ID \rightarrow scope
 - Unique in a given scope
 - Locator \rightarrow space
 - relative in a given space
 - Vector, metric, topological space

ID based Networking – Issues

🗖 ID

- Location-independent ID
- Self-Certifying
- Same syntax for all entities (devices, users, contents, services ...)

ETRI

□ ID based socket

• API for application developers

□ Challenging topics

- ID based Forwarding (because of ID's location-independency)
- Proactive vs. Reactive routing
- Forwarding Entry Explosion (because of Non-aggregatable)
- Routing Scalability (because of no. of IDs in the network graph)

ID Lookup Servers

□ ID-LOC separation

- ID has no clue on its location
- To be accessed, ID should be bound to LOC

2-Step Binding

- Registration (Enrollment)
 - Communication Entity(CE) must register its ID to one or more domains

- each domain has "ID registry function" → (ID, locator) binding
- ID becomes "valid" by registration
- Attachment (Presence)
 - CE actually appears at the certain domain
 - the registered domain may not be the present domain
 - at the point of presence, an address of the presenting domain is assigned (either early or late binding)

ID LOOKUP Servers : Registration and Lookup

ID registration

- first registered at a domain
- registered ID may be propagated toward its ancestor
 - till a domain in between home and top domain
 - downward lookup propagation from top domain finishes at the first domain that know the ID
 - need balance between registration and lookup propagation
- □ ID lookup
 - default to parent (optionally peers)
 - not always same as data forwarding path

ID Lookup Servers : Issues

□ ID Lookup Server (ILS)

- Each domain is associated with an ILS
- Distributed, Hierarchical ILS structure
 - Top-Level-Tier (fully peered)
 - Intermediate Tiers (Parental-child, Peer relations)
 - Leaf (only child relation)
- ILS has relation with others
 - Parent-Child, Peer relation

Challenging topics

- Optimization on query propagation
 - Use Bloom Filter

Components & Interactions

ETR

Domains

□ What is Domains ?

- Basic Building Blocks for composing the whole network
- Abstraction for a piece of the network (network composite)
 - Separate administration, Different media, Local network, Logical networks, Spontaneous networks, Group of services ...
 - Similar concepts: Principal, Turf, Compartment, Context, DIF ...
- Unit of Autonomy
 - Internal operations are hidden from outside of the domain
 - Domain-specific routing
 - May have self-* capability
- Unit of Insulation
 - Accessed via well-defined interfaces
- Unit of Federation/Composition
 - May be defined in recursive manner
- □ Horizontal layers of the network
 - Build Fortress on Prairie

Domains: Basic Building Blocks

Domain : Justification

□ Each domain provides functions, only where being required

- Consider why middle boxes violate layer principles
- □ Examples
 - IPC within a host
 - only process ID
 - Access to a server within the same LAN
 - need Host ID + MAC address
 - Access to a host at the site with local IP address
 - simple fixed routing table (no routing protocol)
 - Access to a server through internet
 - forward to default gateway (NAT) and use IP and routing

ID based inter-domain Routing

Design Goals

- To provide mechanism for inter-domain routing
 - Intra-domain routing is domain-specific
- Define minimal set of rules
- Support mobility, multi-homing, trustworthy, late binding ...

- Distinguishing Features
 - Reactive routing with built-in entries
 - Forwarding entries are setup when actually required
 - Some frequently used entries may be built in advance
 - Forwarding Cache with timeout
 - Entries are setup by explicit "path discovery"
 - Unused entries are removed in timeout basis
 - Path Discovery with routing hints
 - The path for an ID is setup using the location as a routing hint
 - Utilizing ILS for finding (ID, LOC) binding

ID based Routing : Basic Concepts

□ Packet Format (PDU)

- Invariant part: no modification throughout inter-domain
- Variant part: changed depending on domain specific mechanism

ETRI

Routing Hints

- Location (and policy) information bound to the ID
- Obtained by query to ID lookup servers (ILS)
- Normally, Fully Qualified Domain ID (FQDI) "Registered Domain @ @ Top-tier Domain"
- Used in "path-discovery"

ID based Routing : Basic Concepts

□ Forwarding Cache (FC)

- Indexed by ID (exact match)
- Setup by path-discovery
- Domain specific forwarding

□ Path Discovery

- triggered by the first packet when no entry in FC
- may be initiated by control function
- On successful path discovery
 - Setup entries on the GW along the path
 - May utilize "OpenFlow"

ID	Dev	Туре	Domain Address
B1	GW	Eth	00:01:02:03:04:05
C1	GW	IP	129.168.55.22
D1	GW	UDP	129.168.100.3:2485
E1	GW	ТСР	TCP connection ID
A1	ID	direct	-

ID based Routing : a simple example

□ Assume entries at the GW along the path have been setup

ID based Routing : Issues

□ ID exact match (flat ID)

● No longer LPM(longest prefix match) → high performance

- No aggregation → scalability ?
 - Keep only relevant entries in FC
 - Per-interface forwarding cache (split interface)
- □ Location-independency
 - (ID, LOC) binding requires ID lookup propagation
 - Delay at the first packet
 - Frequently-used entries may be built in FC in advance
 - Late-binding and multi-homing is possible
 - Multi-homing : ID with multiple locations
 - Identical copies (servers) : same ID to multiple contents (servers)
- Policy based "path-discovery"
 - May enforce policy while path discovery
 - Resource reservation can be done while path discovery

Self-Certifying

□ Intrinsic Trustworthy Framework

- Self-certifying ID for every communication entity and domain
- Insulated Domain
 - All End-point ID (EID) should be verified
 - All communication must pass the well-defined gateway
- Trusted Domain
 - Trust-level between domains
- □ EID verification
 - At the first-hop domain
 - Only verified ID can be installed in FC
- Domain verification

- If domain A trust domain B in a certain trust-level
 - Then performs appropriate functions (forward or block)
- Initiate security functions depending on trust-level

Components & Interactions

ETR

Putting Together: Data & Control Plane

Putting Together: ID Socket

Putting Together : Prototyping

□ Implement on Linux Kernel

□ Two-level abstraction (ID & IP/Ethernet)

Putting Together: Applying

Multicast, Anycast, Concast

- Defined as logical domains (with attributes)
- Define root of the forwarding tree as GW of the domain

ETRIS

- Join/Leave → register/de-register from the domain
- Forwarding Tree setup \rightarrow path discovery
- Mobility
 - Present → Location update at the ID Lookup Server
 - Move → exception → triggering "path discovery"
- Named Data Network
 - Named Data → assign ID (Content ID)
 - Use the "ID based routing"
 - Identical Copies are handled by the same way as multi-homing

□ VPN, P2P, Spontaneous Networks

• Dynamic creation of domains and membership management

Putting Together: Applying

□ Active entities and Passive entities

- Active entities : ID + processing (Protocols)
- Passive entities : ID without processing
 - forms a domain with GW
 - Agent(without ID) at the GW
- Software Define Network
 - Must concentrate on control/management functions

- Borrow software development techniques
 - Object oriented (Class & Instance)
 - Recursive definition
 - Abstraction and virtualization
 - Late binding
- Apply the principles to network composite as well as networking functions
 - Network composite == Domain

Putting Together: incremental Deployment

Major Contributions

Autonomous Domains

• Map polymorphic networks onto independent domains

- Keep trust zones based on self-certifying ID
- Accommodate dissimilar architectures by simple rules
- □ Hierarchical structuring of Domains
 - Allow recursive definition of network composites
 - Eliminate routing scalability issue
- □ Reactive routing and Path-Discovery
 - Reduces the burden of forwarding entry explosion problem
 - Allows forwarding table split by per-interface forwarding cache
 - Supports mobility and multi-homing (identical-copies)
- □ Incremental Deployment
 - Allows a number of domains on the current Internet
 - Accepts new networks without interference to the existing ones

Concluding Remarks

- □ What FI has to do for new services?
 - Build shared infra with richer capabilities
 - Show incentives to adaptors of new concepts
 - Suggest graceful migration plans from the existing Networks
 Not "backward compatibility" but "adaptability"
- □ New Era of Networks
 - Internet must be based on Science
 - Two major techniques
 - Abstraction
 - Recursion
- Network Composites
 - Network → Lego blocks
 - Union instead of unification
 - Simple rules for composition
 - Invariant glue logics

